THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 8

- 1. Show that there does not exist a function $f : \mathbb{R} \to \mathbb{R}$ continuous on \mathbb{Q} but discontinuous on $\mathbb{R}\setminus\mathbb{Q}$. (**Hints:** Write $\mathbb{Q} = \{r_n\}_{n=1}^{\infty}$. Use the continuity of f on \mathbb{Q} and the density of \mathbb{Q} to construct a nested sequence of closed bounded intervals I_n such that $r_n \notin I_{n+1}$ and that f is continuous on $\bigcap_{n=1}^{\infty} I_n$.)
- 2. If $f : [0,1] \to \mathbb{R}$ is continuous and has only rational (respectively, irrational) values, must f be a constant?
- 3. Let $f : [0,1] \to [0,1]$ be continuous. Show that f has a fixed point. $(c \in [0,1]$ is said to be fixed point of f is f(c) = c.)
- 4. Let *I* be a closed bounded interval and let $f : I \to \mathbb{R}$ be a (not necessarily continuous) function with the property that for every $x \in I$, the function *f* is bounded on a neighborhood $V_{\delta}(x)$ of *x*. Prove that *f* is bounded on *I*. Can the closedness condition be dropped?
- 5. Determine if the following functions are uniformly continuous:

(a)
$$f(x): (0,1) \to \mathbb{R}$$
 defined by $f(x) = \frac{1}{x}$,
(b) $f: [0,\infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$,
(c) $f: [0,M) \to \mathbb{R}$ defined by $f(x) = x^2$, where $M > 0$,
(d) $f: [0,\infty) \to \mathbb{R}$ defined by $f(x) = x^2$,
(e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{x^2 + 1}$,
(f) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos(x^2)$.