THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH 2050A Tutorial 8

1. Show that there does not exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous on \mathbb{Q} but discontinuous on $\mathbb{R} \backslash \mathbb{Q}$. (Hints: Write $\mathbb{Q}=\left\{r_{n}\right\}_{n=1}^{\infty}$. Use the continuity of f on \mathbb{Q} and the density of \mathbb{Q} to construct a nested sequence of closed bounded intervals I_{n} such that $r_{n} \notin I_{n+1}$ and that f is continuous on $\cap_{n=1}^{\infty} I_{n}$.)
2. If $f:[0,1] \rightarrow \mathbb{R}$ is continuous and has only rational (respectively,irrational) values, must f be a constant?
3. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that f has a fixed point. $(c \in[0,1]$ is said to be fixed point of f is $f(c)=c$.)
4. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be a (not necessarily continuous) function with the property that for every $x \in I$, the function f is bounded on a neighborhood $V_{\delta}(x)$ of x. Prove that f is bounded on I. Can the closedness condition be dropped?
5. Determine if the following functions are uniformly continuous:
(a) $f(x):(0,1) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$,
(b) $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$,
(c) $f:[0, M) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$, where $M>0$,
(d) $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$,
(e) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x^{2}+1}$,
(f) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos \left(x^{2}\right)$.
